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Abstract

In 16th-century European astronomy, determining the sizes of the Sun and Moon using a pinhole

camera was common. However, calculating the Moon´s diameter from the concave segment of the

partially obscured Sun yielded puzzling results due to a lack of a comprehensive theory of the

influence of the aperture on the image. This inconsistency led Tycho Brahe to question prevailing

assumptions in celestial mechanics. Recognizing this, Johannes Kepler conducted measurements

during a solar eclipse in Graz July 10, 1600, and soon developed a theory of the pinhole camera

that remains valid today. In this article, we recount the historical episode leading to Kepler´s

theory through original works, complemented by a series of illustrative experiments for classroom

use. This historical case study offers a rich context for reflecting on Nature of Science aspects

within physics education.
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FIG. 1. The Moon Puzzle: In direct view (left), Sun and Moon appear to be about the same size:

αS = αM . In contrast, in the pinhole image hS (right, mirrored for better comparison), the Sun

appears enlarged, while the diameter of the Moon hM , derived from the radius of the obscured

part of the Sun, is reduced.7

I. INTRODUCTION

By the late 16th century, pinhole camera projection had become a common method among

European astronomers for observing and measuring the angular size of the Sun and eclipses

despite the lack of a comprehensive theory.1,2 However, this method led to deviations from

the observations with the naked eye: the solar angles derived from the pinhole images of the

Sun always turned out to be too large. Tycho Brahe, the royal astronomer in Prague, was

among the first to consider the influence of aperture size on the pinhole image, achieving

more accurate results by subtracting the aperture diameter from the Sun’s projected image.3

Another challenge was determining the angular size of the Moon during a solar eclipse (Fig.

1): using the concave edge of the partially obscured Sun resulted in a significantly smaller

apparent Moon size as compared with results of direct observation. Brahe’s conclusions from

this ’Moon puzzle’ pointed to ano

malies in celestial motions, which intrigued the then 28-year-old Johannes Kepler.4

In the early afternoon of July 10, 1600, Kepler prepared to observe an upcoming solar

eclipse from the marketplace at Graz, Austria.5 Predictions indicated that the Moon would

obscure nearly half the Sun at its peak. Using a homemade pinhole camera instrument,

Kepler hoped to determine the apparent size of both the Sun and Moon from their projected

images. This endeavour, he believed, would shed light on the inconsistencies noted by

Brahe. Around 1:30 PM, Kepler positioned his device and meticulously documented his
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measurements in his notebook. Unbeknownst to him, he was on the verge of formulating a

comprehensive theory of the pinhole camera which would not only resolve the Moon puzzle

but also fundamentally shift the understanding of optics.6

The investigation of the Moon puzzle during the solar eclipse of July 1600 is now recog-

nized as a significant landmark in the history of science. Kepler’s development of pinhole

camera theory established the principles of geometric optics which are still taught today.

The documentary evidence for this episode is remarkably well-preserved. Kepler’s notebook

entries, along with correspondence from Brahe and Kepler as well as subsequent optical

works have survived in near-complete form. From an educational standpoint, this allows for

the exploration of the development of pinhole camera theory through authentic documents

within a historically accurate context. By retracing this process, students can not only learn

the geometric rules of pinhole camera theory as technical content, but also gain insight into

key aspects of the nature of the development of science through a historical case study. In

this article we explore the Moon puzzle from historical and experimental perspect ives.

The outline of this paper is as follows. In section II, we trace the origins of the Moon

puzzle from ancient times through Brahe’s conclusions to Kepler’s resolution inspired by

the solar eclipse of July 10, 1600. Section III presents a series of classroom-appropriate

observations and experiments motivated by the development of the pinhole camera. These

activities are intended to emphasize some methodological and scientific aspects of the histor-

ical investigation while familiarizing students with experimental aspects of the Moon puzzle

by means of practical experience.

Kepler´s resolution of the Moon puzzle culminated in his comprehensive theory of ’light

figures’ as detailed in his seminal 1604 work Ad Vitellionem Paralipomena. In a follow-

up paper, we will retrace theoretically, experimentally, and mathematically how Kepler

generalized his concept of pinhole camera theory to the formation of shadow images (’light

figures’).
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FIG. 2. a) Relationship between image size hS,i, image distance d and and solar angle αS for

ideal pinhole imaging, i.e. expansion-free aperture. b) If the influence of aperture D is taken into

account, the solar image is enlarged.

II. HISTORY OF THE MOON PUZZLE

A. The Pinhole Camera as an Astronomical Instrument

The study of image formation through apertures has fascinated scholars since ancient

times. At the heart of the issue was primarely the ’window problem’ or the ’problem of

Sun coins’, specifically the question of how pinhole images of the Sun are formed by aper-

tures of finite size. In the pseudo-aristotelian ’problemata physica’ (4th century B.C.) one

finds the question: ”Why is it, that when the Sun passes through quadrilaterals, as for

instance in wickerwork, it does not produce a figure rectangular in shape but circular?”

Subsequently, scholars in the Middle Ages repeatedly grappled with this question, albeit

without success. Lindberg traces the history of the pinhole camera theory up to the Middle

Ages, detailing contributions by natural philosophers such as Al-Kindi, Witelo, Pecham,

and others.8–11 Their explorations reveal intriguing concepts, heuristic considerations, and

flawed conclusions which can be challenging to understand from today’s perspective. How-

ever, understanding early theories is facilitat

ed by recognizing two distinct cases: point-like and extended apertures, which are often

discussed separately by even the same author in different works (Fig. 2).

For a point-like aperture, the camera obscura model was clear, as the rectilinear prop-

agation of light was unquestioned, producing a point-symmetrically mirrored image of the

source. For larger apertures, the shape of the aperture becomes crucial, leading to ques-

tions about why a square aperture creates a round image, or why the image shape behind

the aperture first matches it and then shifts to resemble the luminous object as the image
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distance increases. These questions challenged the assumption of linear light travel, and led

to introduction of seemingly peculiar concepts such as primary and secondary rays or an

”attenuation” of peripheral light rays.

By the late 16th century, the pinhole camera, likely due to the work of Gemma Frisius,12

had evolved into an astronomical instrument.13,14 In this way, the Sun and its eclipses could

be comfortably observed in a safe manner. Tycho Brahe also adapted most of his instruments

for this purpose. At that time in astronomy, the study of eclipses was of central importance.

They provided the only means to determine meridian differences (i.e., longitudes) between

different locations and were crucial for studying the relative movements of the Sun and the

Moon. Astronomers like Kepler, who supported the Copernican heliocentric model of the

solar system, needed to rely on precise eclipse theories to correctly interpret the movements

of the planets based on the known motions of the Earth and the Sun. Therefore, there was

great interest in deducing correct angular sizes from pinhole images of Sun and Moon.

Many astronomers assumed that they could base their calculations of the Sun’s size

on the ideal pinhole camera model where the aperture is treated as point-like. However,

discrepancies between the angular size of the Sun observed using other methods and the size

calculated from the pinhole image prompted Brahe to refine his calculations by subtracting

the pinhole’s diameter D from the measured image diameter hS:

hS,i = hS −D . (1)

This approach was empirically effective but lacked theoretical foundation.15 In a letter to

Michael Mästlin,16 Brahe recounted his observations of the solar eclipse on March 7, 1598.

These observations subtly indicated some inconsistencies within the field of astronomy:17,18

Truly it must be acknowledged, that the Moon during a solar eclipse does not

appear to be the same size as it appears at other times during full Moons when

it is equally far away; but it appears as if it were constricted by about 1/5th, by

causes to be disclosed elsewhere. As a result, it appears that the Moon can never

obscure the Sun completely, and even if the Moon interposes itself centrally, the

remaining light of the Sun encircles it . . . Although the diameter of the Moon

then by our calculations ought to have been 343

4

′

, it could not have appeared in

front of the Sun to be more than 28′, which constriction I recognized and was
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FIG. 3. Left: Periodic variations in the solar and lunar angles due to the eccentricity of the Earth’s

and Moon’s orbits. Perihelion (January) and Aphelion (July) are the closest and furthest points

of the Earth’s orbit around the Sun. Perigee and Apogee are the closest and furthest points of

the Moon’s orbit around the Earth. Right: Reconstructed data on the solar eclipses observed by

Brahe 1598 and Kepler 1600.20

noticed by no one before me. But experience has taught me thus in observations

of the Sun on several occasions when it is eclipsed either in the upper or lower

part.

Brahe claimed that the Moon appears about one-fifth smaller during conjunctions (solar

eclipses) than during oppositions (full Moons). For Kepler, this observation was remarkable

because it suggested that the apparent size of the Moon changes even though, according to

the prevailing theory, its distance to Earth should remain constant.19

Instead of correctly adjusting the Moon’s diameter hM by adding the aperture diameter

D, Brahe either took the image width hM as the true size or compounded the error by

applying the Sun’s image correction (Eq. 1) to the Moon and subtracting the aperture

diameter (hM−D), which led to significantly underestimating values for the Moon’s apparent

size.

To gauge the accuracy of Brahe’s observations and astronomical measurements of that

period, we compare his values with reconstructed data on the apparent sizes of the Sun and

the Moon (Fig. 3).20 During the ’Great Eclipse’ on March 7, 1598, Brahe was in Wandsbek,

near Hamburg, Germany. At this time, the perihelion was two months previous, and the

solar angular size had decreased accordingly by about 1/3′ to 32′11′′. The Moon had been

at perigee on March 5th and had an angular extent of 32′54′′ at noon on March 7th.

When Brahe noticed the reduction in the Moon’s size, he updated his lunar tables with
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FIG. 4. Kepler’s pinhole camera instrument.24

the smaller values and informed other astronomers, including Kepler. Instead of considering

the imaging conditions of the pinhole camera, Brahe speculated about astronomical causes

for the fluctuations in the Moon’s size and suggested that the apparent reduction was due

to the intensity of sunlight.3 In contrast, Kepler interpreted Brahe’s results as evidence that

the Moon, appearing smaller, might be farther away than previously thought, prompting

him to question existing astronomical theories.

Other theories suggested that the Moon had a transparent atmosphere that would glow

during a full Moon but become translucent when it passed in front of the Sun. While

these ideas may seem unusual today, we must recognize the challenges astronomers faced

when interpreting images from pinhole cameras. They sought a comprehensive theory that

accounted for instrumental conditions like aperture effects, as well as astronomical and

optical factors. The relationship between observation and theory reveals which effects arise

from which causes.21,22 Kepler acknowledged this complexity, playfully referring to eclipses as

the ’eyes of astronomers’,23 highlighting the close connection between optics and astronomy.

He wasn’t convinced by Brahe’s ideas, believing the orbits and sizes of celestial bodies were

constant. Kepler hoped that observing the solar eclipse of July 10, 1600 in Graz with a new

instrument would help resolve the mystery.

B. The Solar Eclipse of July 10, 1600, and Kepler’s Solution of the Moon Puzzle

For the July 1600 eclipse, Kepler designed a special instrument (Fig. 4) featuring a nearly

4-meter-long axis.26 This axis could rotate horizontally around a fixed point (azimuth) and be

adjusted vertically (altitude). Discs were attached to the axis at specific intervals, positioned

perpendicular to its length. The upper disc (M) had a circular aperture, while the lower
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disc (S) acted as a viewing screen. Kepler’s notebook entries begin with a diagram and

data sheet detailing this instrument. Here we examine his notebook entries more closely; a

wonderful summary of this episode can be found in Straker.3

On July 7, three days before the eclipse, Kepler used his instrument to measure the

solar angular diameter but found the values too large. He adjusted his measurements using

Brahe’s correction method and checked to see if the screen’s texture influenced the visibility

of the Sun’s image. After discovering a discrepancy in the screen-aperture distance, he

recalculated, but the diameter remained large. By July 10, Kepler reassessed the Sun’s

diameter:23

This is 10370 because nothing perceptible was achieved: The diameter of the

ray [image] I used appeared, although the light given at the beginning was faint,

through watery clouds, so that it could not be seen on blue paper, on white paper

it appeared black with 1051

2
parts, and the aperture with 161

2
parts. Therefore,

the remainder is 89 parts. Halved, it is 441

2
.

Kepler’s records indicate that the value of 10370 represents the distance between the

aperture and the screen, corresponding to one rod, an old unit of measurement presumably

equivalent to 3793 mm.27 This means that the uncorrected image of the Sun, projected

through the pinhole camera, was about 4 cm in size, while the diameter of the pinhole itself

was about 6 mm.

In modern notation, the apparent size is given by the relationship αS = 2·arctan(hS,i/2d),

where αS is the solar angle, hS,i is the corrected diameter of the projected image, and d is

the image distance. Because the tangent represents a ratio of lengths, we can use Kepler’s

original values of hS,i/2 = 44.5 units and d = 10370 units. This yields αS ≈ 0.4917◦ = 29′30′′.

While Brahe had noted the solar angle as 29′40′′, this 10 arcsecond discrepancy prompted

Kepler to refine his approach as he proceeded to determine the Moon’s diameter:23

I measured the diameter of the Moon only once, and it was not accurate but

somewhat smaller than expected. At other times, the image was too faint. From

three specially marked points on the lunar circumference and three specially

marked points on the solar circumference, the solar radius was clearly deter-

mined, i.e., in the correct size, due to the angle of intersection and the optical

8

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

1
1
9
/5

.0
2
2
8
3
6
6



FIG. 5. a) Kepler’s sketch25 from his notebook illustrates the Moon puzzle solution, showing the

Moon’s diameter reduced and the Sun’s enlarged by the aperture’s diameter. b) Kepler’s original

sketch solving the Moon puzzle, from a letter to Mästlin on September 9, 1600.28

conditions. The lunar radius was 1 inch and 262

3
points or 982

3
. If 1051

2
yield

29′30′′, what does 982

3
yield?

If the angle of 29′30′′ for the Sun corresponded to 1051

2
units, then 982

3
units would result

in a lunar angle of [(98 2/3)/(105 1/2)]·0.4917◦ = 0.4599◦ which is 27′36′′ for the Moon, con-

sistent with Brahe’s false conclusion of around 28′. But Kepler continues searching, leading

him to reinspect his instrument on July 12th and remeasure the Sun’s height. Since thieves

had meddled with his equipment, he had inaccurately recorded some length measurements.

While Kepler further refined his calculations to pinpoint the error, an unexpected insight

surfaced amid his records:23

There occurs to me just now something concerning the diameters of the lumi-

naries [Sun and Moon], why the Moon appears smaller in conjunction than in

opposition. The proof emerges clearly from the figure [Fig. 5a]. I must only still

consider the order of the problems.

Immediately afterward, Kepler developed a novel theory of the camera obscura by sys-

tematically formulating theorems and corollaries. He first presents 17 theorems to establish

the foundations of a broader theory of the pinhole camera, then applies these to the Moon

puzzle in another 14 theorems. From the start, alongside the principle of straight-line light

propagation, he introduces a key concept: he views the light source as a collection of an

infinite number of point sources. In the case of a point-like light source, a sharp projection of

the extended aperture appears on the screen. This image matches the aperture’s size when
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FIG. 6. Kepler’s solution to the Moon puzzle: By convolving the image of the partially occulted

Sun with the imaging aperture D, the solar image hS appears enlarged (hS = hS,i + D) and

the lunar image hM reconstructed from the concave edge appears reduced by the same amount

(hM = hM,i −D). For simplicity, the size of the images of Sun and Moon are assumed to be the

same.

the light source is infinitely far away. Since both the light source and the aperture have finite

dimensions, the geometries of both influence the pinhole camera image. The counterpart

to the point-like light source is the point-like aperture: in this case, the influence of the

aperture on the image is close to zero, resulting in a sharp, point-symmet

rically mirrored image of the light source, an ideal pinhole camera. He then specifies a

criterion under which the image on the screen tends to match the light source’s image: If

the distance from the aperture to the screen in multiples of the aperture diameter is not

smaller than the distance from the light source to the screen in multiples of the light source

diameter, then the shape of the image on the screen deviates from that of the aperture

towards that of the light source.

The solar eclipse in Figure 5a exemplifies a special case of Kepler’s theory. Central to

this is the solution of the old ’window problem’. A sharp image of the Sun forms only if the

aperture is point-like. Now Kepler gradually reveals the solution to the Moon puzzle within

his pinhole camera theory, explaining several enigmatic details. For instance, he clarifies

why the horns of the solar crescent appear rounded in the pinhole camera image yet sharp

in direct view, and why the transition from partial to total eclipse on the pinhole camera

screen is abrupt, unlike the gradual change observed in the sky.

Kepler’s solution to why the Moon’s size appears to shrink during solar eclipses is that
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the Moon doesn’t actually shrink; rather, the Sun’s image, projected through a circular

aperture, enlarges and overshadows the Moon’s image. For an infinitely distant Sun, the

Sun’s image expands by the aperture’s radius along the entire edge of the solar crescent.

Consequently, as the Sun’s bright image in the pinhole camera increases by the aperture’s

diameter, the Moon’s obscuring part appears to reduce by the same amount. To calculate

the apparent sizes correctly, one must therefore adjust the radius of the solar image in the

pinhole camera by subtracting the diameter of the aperture from the solar image and adding

it to the lunar image (Fig. 6).

Kepler started by recalculating, first by adding the diameter of the aperture to the dark

image of the Moon, i.e., 982

3
+ 161

2
= 1151

6
. This gives αM ≈ 0.6363◦, which is 38′10′′. This

value is obviously too large, but it is in the right direction and therefore more in line with

his astronomical expectations of a lunar theory wherein the Moon cannot possibly become

smaller. To obtain a more realistic value closer to Brahe’s reported lunar angle of 343

4

′

,

Kepler uses the ratio between the Moon and the Sun, which he states as 112

3
to 10. Applied

to the solar angle he found, 29′30′′, this ultimately yields a value of 34′25′′ for the Moon.

Kepler not only provided a solution to the Moon puzzle, but in his notes he also presents

a generalized theory of the pinhole camera that still holds true today within the framework

of geometric optics. This has sometimes been referred to as a milestone in the development

of modern optics.29

In 1604, Kepler published his optical treatise Ad Vitellionem Paralipomena, in which

he revealed his theory of the pinhole camera to the scientific community.25,32 This treatise,

particularly in its second chapter, explores the concept of ’light figures,’ including a com-

prehensive and generalized theory of the pinhole camera. This episode will be described in

greater detail in a follow-up paper. For now, we turn to student-level experiments.

III. IMAGING EXPERIMENTS: EXPLORING THE CONTEXT OF THE MOON

PUZZLE

The aim of this section is to understand the experimental context of the Moon puzzle

using a series of simple observations and qualitative experiments that can be carried out in

student laboratories. First, we want to build on everyday observations to develop familiarity

with the phenomena and a sensitivity for the relevant quantities and conditions (Fig. 7).
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FIG. 7. (a) Solar images on the ground under high leaf canopies are well known and described

frequently in the literature.33–36 (b) The extent of the influence of size and shape of the solar disc

on the appearance of shadows in nature becomes particularly clear during solar eclipses, when

the solar disc is partially obscured (Photo: Bill Gozansky). (c) Large solar image on the floor of

Regensburg Cathedral and (d) series of solar images as they typically appear at the openings of

louvre blinds.

Second, we study the imaging conditions of a pinhole and show how the influence of the

aperture on the resulting image can be demonstrated using simple equipment. This will

provide the experimental basis for understanding Kepler’s solution to the Moon puzzle.

A. Experiment I: Creating ’Sun Coins’

We encounter pinhole images of the Sun, so-called ’Sun coins’ in everyday life: on the

shaded forest floor, on house walls, behind lowered blinds, etc. (Fig. 7). These can easily

be produced by crossing the fingers of both hands in front of a sunlit wall (Fig. 8). As

one steps backward, the shadow image of the finger grid (a) becomes blurred as in (b); the

openings in the shadow lose their similarity to the openings in the grid and turn into light

circles of the same size: images of the Sun, differing only in brightness and sharpness (c).

The smaller the opening in the grid, the darker but also sharper the solar image. If the

distance to the wall is increased further, the solar images continue to grow and will overlap.

The mean solar angular size αS = 32′ ≈ 0.53◦ corresponds to a ratio of image size hS,i

to image distance d of hS,i/d ≈ 1/108 rad. If the influence of the aperture is taken into

account, the size of the solar images generated with the finger grid can be roughly estimated

by using the rule of thumb hS/d ≈ 1/100 rad. The size and sharpness of the solar images

shown in Figure 8c are not far from those that Kepler is likely to have produced with his
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FIG. 8. Sun coins, created in the shadow of crossed fingers on a sunlit wall. The shape of the

openings still dominates near the wall (a). As the distance increases (b,c), this recedes in favour

of the solar images. Photos: Laila Ellis

open pinhole camera at an image distance of about 4 m.

In order to obtain larger, higher-contrast and sharper images of the Sun, set up a small

pocket mirror outside and project the Sun from a greater distance through an open window

into a darkened room. For a measurement carried out on October 16, 2017 (calculated

deviation of αS from the mean value of only 6 arcseconds) we used a surface mirror (Ø = 40

mm), whose effective area can be varied with a fully closeable pupil aperture (Fig. 9b), which

simplifies the positioning of the solar image (large aperture) and at the same time allows

sharper images (small aperture). With an aperture of D = 6 mm and an image distance of

d = 2255.0± 0.5 cm, we obtained a solar image with a horizontal size of hS = 21.4± 0.2 cm

(Fig. 9a) and therefore get d/hS ≈ 1/105. The magnification of the solar image compared

to the theoretical value for an expansionless aperture (hS,i = d/108 = 20.87 cm) is therefore

108/105 ≈ 3%.

To apply Brahe’s rule for calculating the size of the solar image, the angle of inclination

of the mirror in respect to the image plane must be taken into account. In Fig. 9(a), the

horizontal size of the aperture was fully effective. With hS,i = hS − D = 20.8 cm, the

deviation of hS,i/d from 1/108 is less than 0.5 %. The seasonal variations of the solar angle

between perihelion and aphelion are in the order of 3.3%. The resulting difference in size

of the solar image between aphelion and perihelion would be in the order of 0.7 cm in the

above case and should be measurable.
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FIG. 9. Pinhole image of the Sun (a), produced with a variable mirror aperture (b).

B. Experiment II: Simulating and Imaging a Solar Eclipse

To replicate the conditions of a solar eclipse in the laboratory, we use the setup shown in

Figure 10. The light source consists of a hemisphere (Ø = 30 cm) whose interior is coated

with a highly matte white surface and illuminated by four 500W halogen lamps. A circular

aperture (Ø = 19 cm) made of sheet steel in front of the light source represents the disc of

the Sun. The Moon is represented by a cardboard disc glued onto a glass pane and which,

in relation to the projection screen, has the same angular extent as the light source; we

choose this special case for simplicity. Using a pinhole aperture in the projection screen, the

scenario is projected onto a second semi-transparent screen, which we observe from behind.

The object distance of the light source from the first screen is d1 = 285 cm, which

corresponds to a ’solar angle’ of 1/15 rad. With an image distance d2 = 45 cm to the second

screen, a ’solar image’ with a size of about d2/15 = 3 cm can be expected. Figure 11a

shows the eclipsing phases simulated under the above conditions by moving the lunar disc

successively perpendicular to the direction of illumination, as seen from the pinhole (direct

view). Figure 11b shows the respective pinhole images. The size of the pinhole was D = 1

mm, and the solar images were measured to be about hS = 31 mm, as expected.
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FIG. 10. Setup for replicating and imaging a solar eclipse with a pinhole camera.

FIG. 11. Replicated solar eclipse in direct view (a) and imaged with the setup from Figure 10 (b).

C. Experiment III: Exploring the influence of the aperture and Brahe’s rule

Kepler solved the Moon puzzle by examining the imaging conditions of the pinhole aper-

ture. In order to demonstrate the influence of the pinhole aperture on the size of the image

by varying the aperture size, we start with a reproduction of the Moon puzzle. To this end,

we compare the direct view of the eclipsing situation with the pinhole image of the partially

eclipsed ’Sun’ for varying aperture size. Figure 12a shows a photo of the direct view, scaled

to the image size of the ideal pinhole camera image (hS,i = 30 mm). Figure 12b-d shows how

the deviation of the values for hS and hM from the ideal case increases with larger aperture

D.

In Figure 12d with an aperture size of D = 6 mm, the pinhole image of the partially
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FIG. 12. Influence of the pinhole on the size of the solar image for different pinhole sizes D (b-

d) compared to the scaled direct view of the partially eclipsed ’Sun’ (a). Images b-d have been

mirrored to facilitate comparison. The measurement uncertainty of hS and hM is in the order of

±1 mm.

eclipsed ’Sun’ with hS = 36 ± 1 mm appears significantly enlarged and characteristically

rounded at the tips. The lunar diameter reconstructed from the concave edge of the ’Sun’

is reduced by the same factor: hM = 24± 1 mm. Based on the pinhole image of the eclips-

ing situation, the following conclusion seems reasonable: As long as the ’Sun’ is partially

eclipsed, the ’Moon’ appears to be about one-third smaller than at the moment of total

eclipse.

Applying Brahe’s rule, i.e. subtracting the size of the pinhole D from the resulting solar

image size hS in Table I, results in a good agreement with the calculated value respectively

the direct observation. However, we must take into account that the image of the aperture

D′ generally cannot be equated with the aperture D itself, as is possible in the case of

the very distant Sun. With the values given above for d1 and d2, the magnification of the

aperture image M = D′/D = (d1 + d2)/d1 is 15%. For D of Table I, the magnification thus

remains within the measurement uncertainty of ±1 mm. With respect to our experimental

setup, the assumption D′
≈ D seems reasonable for a qualitative reproduction in physics

lessons.

The experimental exploration of the aperture´s influence on the pinhole image proves

that the Moon puzzle is not a consequence of astronomical factors, but rather of the imaging

properties of the pinhole camera (optical convolution). The mystery is solved by realizing

what influence the imaging has on what is being imaged.
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TABLE I. Deviations of pinhole images of ’Sun’ hS and ’Moon’ hM during the simulated partial

solar eclipse as a function of aperture size D (Fig. 12), given in mm; the measurement uncertainty

is ±1 mm. In agreement with the ideal pinhole scenario, direct observation of the eclipsing situation

is set to be hS = hM = 30 mm.

D hS hM

1 31 29

4 34 26

6 36 24

IV. SUMMARY

We have explored the development of pinhole camera theory following the work of Brahe

and Kepler, drawing from original sources. While the question of how ’Sun Coins’ form was

initially of academic interest, the pinhole camera as a standard observational tool highlighted

the lack of a comprehensive theory for pinhole imaging, leading to significant difficulties

in interpreting astronomical data. Brahe’s interpretation of the Moon puzzle challenged

several principles of celestial mechanics that Kepler considered certain. Kepler, whose optical

insights were crucial for accurate interpretation of astronomical observations, likely faced

considerable epistemic pressure, possibly exacerbated by his personal rivalry with Brahe.

The historical context presented here can serve as an example of the communication of

aspects of the Nature of Science37 or contribute to the field of Storytelling.38,39

As the cases of Kepler and Brahe illustrate, scientific knowledge is profoundly influenced

by historical, cultural, and social factors. Research includes subjective elements, as shown

when Brahe interpreted the reduced lunar diameter without clear or comprehensive justi-

fication to support his perspective. Furthermore, research is a creative endeavor that does

not follow a rigid, step-by-step methodology. This is evident in Kepler’s records, which show

that the development of his pinhole camera method was not based on a systematic approach

but rather on a mix of intuition and serendipity. Therefore, the Moon puzzle is particularly

well-suited to being presented as a narrative within the storytelling approach. This strategy

allows for the creation of a historical example that accurately reflects the nature of scientific

inquiry and discourse.
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In the second part of this two-part article (in preparation), we will experimentally and

mathematically explore the story of Kepler’s ’light figures’ (soft shadow images). This shows

how Kepler’s generalizations of his pinhole camera theory became accessible to the scientific

community.
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